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Abstract

A symmetry in the quantum logic (L, M) is defined as a pair of bijectionsa : L —» L and
v 1 M~ M such that the probabilities are preserved. Some properties of the symmetries
are investigated.

1. Introduction

A symmetry of a physical system is intuitively a transformation of the
system, leaving all physically significant features invariant.

In the quantum logic approach, the quantum theory is introduced in terms
of the set of propositions L of a physical system and the set of states M of
that system. Each state of M defines a probability measure on L. We shall
define a symmetry to be a pair of bijections « : L - L and v : M —~ M such that
v(m) (a(a)) = m(a) for each m €M and a € L. Thus the probabilities are pre-
served by a symmetry. This definition is analogous to the definition of sym-
metrices in C* algebras introduced by Roberts and Roepstorff (1969). We
shall analyze the properties of a symmetry in a system (L, M).

2. Definitions and Notation

Let L be a partially ordered set with first and last elements 0, 1, respectively,
which is closed under a complementation ¢ > ¢’ satisfying

(i) @) =a

(ii)a < b implies »' < &’

We denote the least upper bound and greatest lower bound of @, b € L, if they
exist, by « V b and @ A b, respectively, and assume

(iiyaVa' =1 foralla € L
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We say that @, b € L are disjoint and writea L b ifg < b'. We say thata, b €L
are compatible and write ¢ < b if there exist mutually disjoint elements ay, by,
cELsuchthata=a; Veand b =b; V c. We call L a logic if it also satisfies

(iv) V ¢; € L for any disjoint sequence (g;) C L
(v) if 4, b, ¢ € L are mutually compatible, thena < b V¢

The set of propositions of a physical system is supposed to be a logic
(Mackey, 1963; Varadarajan, 1962, 1968; Gudder, 1967).
A state is a non-negative function on L satisfying

() m(1)=1
(ii) m(Va;) = Em(a;) for any disjoint sequence (a;) C L.

A set M of states is full if m(a) < m(d) forallm EMimplya < b,a,bEL. A
logic with a full set of states has the orthomodularity property

a< bimpliesh =aV (b Ad)
A state m € M is pure if it cannot be written in the form
m=cm; +{1 —cymy, where 0 < c<1and my, my€M

Let P C M be the set of all pure states. The set of states of a physical system is
usually supposed to be closed under countable convex combinations, i.e.,
m;E€M,i=1,2,...imply Z t;m; € M for any sequence (#;) of real numbers such
that0<f; <tand Zf;=1.

We shall call the couple (L, M), where L is a logic and M is a convex full set
of states, the quantum logic.

Let L and L' be orthomodular logics. The map T': L - L' is a ¢ homo-
morphism if

i 70)=0
(i) T(")=T(@) foranya €L
(iii) T(Va) = V(T(e;)) for any disjoint sequence (a;) C L

The one-to-one ¢ homomorphism of L onto L is an automorphism. Auto-
morphisms in special types of logics were treated by Emch and Piron (1963),
Dvurecenskij (1976), and Kruszynski (1976).

Let (L, M) be a quantum logic. An observable x is a 0 homomorphism from
the Borel sets B(R) of the real line R into L. A collection of observables
{xx: A€ A} is simultaneous if x) (F) < x,(F) forall £, FEB(R) and \, u € A.

If x is an observable and u a Borel function on R, we define the observable u(x) by
u(x)(E) = x@ " Y(E)) for all E € B(R). More generally, if  is an #-dimensional
Borel function and uy, #,, . . ., U4, are Borel functions on R, we define the
observable Y (x), . . ., uy{x)) by

Y (), - . un()YE) = x{w: Yy(w), . . ., un(w)) EE}
for all E € B(R).
The spectrum o{x) of an observable x is the smallest closed set £ such that
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x(E) = 1. An observable is bounded if o(x) is bounded. The expectation of an
observable x in the state m is

m(x) = | Am[x(@N)]

if the integral exists. : )
An observable x is a proposition observable if o(x) C {0, 1}. The following
statements are equivalent (Mackey, 1963):

(i) x isa proposition observable

(ii) x is an indicator function of an observable

(iii) x> =x
. Let X be the set of all observables and X7 the set of all proposition obsery-
ables on L. We can define a partial ordering on X, by setting x < y if m(x) <
m(y) for all m € M and an orthocomplementation by setting x*= f(x), where
fH)=1—1t,t€R. To eacha €L there is an observable x, € X}, such that
xA{1}) =a. It can be easily seen that the map a = x, from L onto X js an
isomorphism.

3. Properties of a Symmetry

Definition 1. Let (L, M) be a quantum logic. A pair of bijections
a:L~Landv: M~ Mwill be called a symmetry if v(m){(a(a)) =
m(a) foralla €EL,mEM.

Proposition 1 . I o: L - L and v: M — M arise from a symmetry,
then o is an automorphism of L and v preserves countable convex
combinations in M,

Proof. As a: L~ L and v : M ~> M are bijections, we have a[L] =
{a(@):a € L} = L and v[M] = {v(m) : m €M} = M. The inverse maps & and
v exist and arise from a symmetry as well. From m(a(0)) = v '(m) (« ! o(0)) =
v (m)(0) = 0 for all m € M we get a(0) = 0. From 1 = m(a V &) = m(a) + m(a")
for all m € M we have m(a(a)) = 1 — m(a(a)) = 1 — v (m)(a) = v Y (m)(d') =
mla(a")), that is a(a)' = a(e’). Now a < b, ¢, b € L implies by the ortho-
modularity property m(a) < m(b) for all m € M. From this it follows m{a(a)) =
v (m) (@) < v ™I (m)(b) = m(a (b)) for all m € M, that isa < b implies a(a) <
afb). Let (¢;) C L be a sequence of mutually disjoint elements. Then ¢; < g}
implies a(a)) < a(g;) = a(ay)’. Thus we get m(Va(ay) = Emlale)) =
v (m)(a;) =v " (m)(Va,) for all m € M, i.e., Va(z;) = a(Va;). We have shown
that « is an automorphism of L. Now let m € M, m = Zt;m;, where m; €M
and 0 < £; < 1, £¢; = 1. Then for any a € L v(m)(a) = m(a" (@) = Zemla (@) =
Zt;v(my)(a), that is v(m) = Zt,w(m;).

Corollary 1. Let v : M — M arise from a symmetry. Then m € P implies
v(m) EP.

Corollary 2. Let a: L = L arise from a symmetry. Then a < b implies
ala) < alb).
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Let a: L - L be an automorphism. We shall define the map &@: X - X by
a(xX}(E) = a(x(F)) for all E € B(R). It can be easily seen that & is a bijection.

Proposition 2. Let (a, v) be a symmetry. Then v(m) @(x)) = m(x), in
the sense that if either side of the equation exist, so does the dther
and the equality holds.

Proof.
mx) = [ (@) = [ Wo(m) [ae@)] = f A (m) @0 @N] = om) @)

Proposition 3. Let a: L > L be an automorphism. Then for each
observable x and each Borel function u on R a{u(x)) = u(a(x)).

Proof.
aENE) = a[u(x)(E)] = alx@(EN] =a(x) e (E)] = u@@))E)

Proposition 4. Let (L, M) be a quantum logic, X the set of all
observables, and X7, the set of all proposition observables on L. Let
7: X - X be a bijection such that 7 (f(x)) = f(z(x)) for all x € X and
all Borel functions f on R. Then the map.«: L > L defined by a(a) =
7(xz)({1}) is an automorphism.

Proof. Let f(f) =t*,t €R, then f ('r(x)) = 7{f(x)) 1mp11es that 7(x?) = [r(x)]%
Forx € XL we have x2 =x, so that 7(x%) = 7(x) = [7(x)] > On the other hand,
if x % x2, then 7(x) # 'r(xz) = [7(x)]?, as 7 is one-to-one. Thus we have shown
that T[XL] =771[X.] = Xz.. Let us set a(@) = 7(x4)({1}); then a is a one-to-
one map of L onto L. We have to show that (i) a(1) = 1, (ii) a(¢’) = a(a)’ and
(iil) a(Va;) = Va(a;) for any disjoint sequence (a;) C L. To show (i) let x; be
such-that x;({1}) = 1. If x is any observable, then Ir(x)({1}) = x I} ({1}] =
x(R) =1, where I, is the indicator function of R. Thus Iz {x) = x; for any
x€eX. T(IR(X)) Ir(r(x)) implies 7(x;) =x, that s a(1) = 7(x }{1} =
x,({1})=1. To show (ii) let f(t) =1 — £, ER. Then f(x,)({1D) = x,(f {1} =
x,({0}) = x,({1}), i.e., fx,) = x4 and a(a) T(xa Y1) = 7(fGx ({1} =
FEG)1D) = 10c) ({0}) = [1(x)({1D]" = (a)'. To show (i), let (2;) C L
be such that g; < a foralli#j,i,j=1,2,. - Clearly, x4; ¢ x4, for alli,j =
1,2,.... Then by (Gudder 1967, Theorem 2.4), there is an obéervable x and
Borel 'functions u; such that x,, = uv(x). Let us observe that

m(x\i?ai) = m(x\/ 1“1({1})) m (Vd,) Z m(az) z m(xat

for all m € M, so that the observable Z]x,, ; exists and equals xyn,, (Gudder,
1966). Let us set leal (xa1 coXg )= YUy, - Uy) = go(x) From 7(p())=
@(7(x)) it follows that 7(Z{'x,;) = 'r(l//(ul, . u,,)(x)) Uy, . . . ) (7 (x)) =
Zlulr(x)) = Tt (i (x)) = =7 T(xa) Now we can show that « preserves the
order. Leta < b, then b =a V c, where g < ¢’ by the orthomodularity property.
Then x5 = x, +x. implies 7(xp) = 7(xg) + 7(x ), .., T(xy) < 7{xp), which implies
mitx)({1})] < mr(xp)({1})] forallmE M, that is, a(a) < a(b). From the
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existence of 7% such that 77(f(x)) = f(r7}(x)) (indeed, 7{f( 1 (x))] = flrr ()]
implies f(r7(x)) = 771(f(x)) there follows the existence of a™! also preserving
the order. Thena; < V7 g;,i=1,2, ... imply afa) < e(V7@),i=1,2,.. ..
letb€Lbesuchthatalg)<bhfori=1,2,.... Theng; <o '(h)i=1,2,...
imply VTa; < a”X(b), that is, a(V7a;) < b. Thus we have shown that a(Vya;) =
Ta(a).

Now we shall investigate the case in which one of the maps «: L - L and

v: M~ Mis sufficient to define a symmetry,

Proposition 5. Let (L, S) be a quantum logic, where S is the set of all
states on L. If a: L = L is an automorphism, then there exists a bijec-
tion v: § - § such that (a, ») is a symmetry.

Proof. Let us set v(m)(a) = m(e X)) for all m €S, a € L. It is easy to check
that g > v(m)(g) is a probability measure on L, so that v(m)ESand v: § > S
is a bijection. 4

Let 2 be the set of all probability measures on R and let Hom(S, 2) be the
set of all convex homomorphisms on S into 2. Then a set of observables X on
the logic L is said to be total if to each element of Hom(S, 2), there corresponds
a unique observable in X (Kronfli, 1970). That is, if § € Hom(S, 2), then
there is an x € X such that B(py{E) =p((£)) forall p € S, E € B(R).

Proposition 5. Let (L, §) be a quantum logic such that the set of all.
observables X is total. Then to each convex isomorphismv: S~ §
there is an automorphism « : L - L such that (o, v) is a symmetry.

Proof. Let v : § - § be a convex isomorphism. Then for x € X, the map
B:m > w(m) (x(+)) is a convex homomorphism of § into 2. From the totality
of X it follows that there is a y € X such that v(m) (x(£)) = m(y(E)) for all
mE S and E € B(R). Let us set y = 77(x). Then x — 7 ¥(x) maps X onto X
and is one-to-one since v is an isomorphism. Let f'be any Borel function on R.
Then m [t (FENE)] = v(m) [FE)E)] =v(m) [x(f EN] = m[r7)(F E)] =
mfNE)] for allm € M, E € B(R), so that 7 Y(f(x)) = f(r™ (x)). By
Proposition 4, there is an automorphism o™ of L such that 77 %(x,)({1}) =
o"Ha) for all a € L. Then v(m) @(@)) = »(m) [(rGe))({1D)] = m[r (e 11)] =
mlx({1})) = m(a).

4. Symmetries and the Superposition Principle

In this sequel, we shall use the stronger form of quantum logics which was
considered by Pulmannovi (1976).

Let L be a logic, M a set of states on L, and P the set of all pure states in M.
feacsLl,meP, wedefine P, ={mEP.m@)=1}, Ly, ={a€L:m@=1}%
We shall suppose that the system (L, M) satisfies the following:

(i) P, C P, impliesa < b
(ii) Ly, C Ly, implies m; =m;,
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It is easy to check that M is a full set of states on L. Indeed, let m(a) < m(b)
for all m € M, then ma) = 1 implies m(b) = 1 for all m € P, so that P, C Py,
which impliesa < 2.

We recall that my € M is a superposition of the states p, g EM if p(a) = 0,
q(a) = 0 imply mqe) = 0.

A set § C Pissaid to be closed under superpositions if it contains every pure
superposition of any pair of its elements. If S is not closed under superpositions,
we denote A(S) the smallest subset of P closed under superpositions and con-
taining S.

We say that the superposition principle holds in (L, M) if there is an
r€A({p,q}),r #p,r #q forany pairp,q in P,p #q.

The set S C Pis a sector if (i) S = A(S), (ii) if p, ¢ €S, then there is an
r€A({p,q}), r #p,r #4q, (ii)) if g EP,q € S, then A({p, q}) = {p, g} for
any p €5,

Proposition 7. If (&, v) arise from a symmetry, then v[A(S)] =
AW@I[S]) forany S CP.

Proof. From Corollary 1 it follows that »[A(S)] = {»(p) : pEA(S)} CP.
We shall first show that v [A(S)] is closed under superpositions, Let p,
g €v[A(S)] and let r be a superposition of p, ¢, that is, let p(a) = 0, (@) = 0
imply r(a) = 0. Let v (p)(») = 0 and v H(g)(b) = 0, then p(a(h)) = 0 and
a(a(®)) = 0, which imply r(a(b)) = 0, ie., v (¥)(5) =0. That is, » () is a
superposition of » {(p) and v H(g). But » (p), v (g) € A(S) and consequently
v € AS),ie.,r€Ev [A(S)]. Since ¥ [A(S)] is closed under superpositions,
we have A(w[S]) Cv[A(S)]. We can repeat the same reasoning for the symmetry
(e, v™!) and the set »[S] C Pinstead of S. Thus we get A(» [y S1Hc
v A@ISD], consequently ¥ [A(S)] C A@[S]).

Proposition 8. Let (&, v) arise from a symmetry. Then if SC Pisa
sector, »[S] is a sector as well.

Proof. We have to show the properties (i)~(iii) from the definition of a
sector. Property (i) follows from Proposition 7. To show (ii), let p,q €v[S],
then » (p), v (g) €S and there is an 7 € § such that » € A({r"'(),» " (q)}),
r# v Yp), r #v7(g). Then as in the proof of Proposition 7, »() € A({p, ¢}),
v(r) # p,v(r) #q. For (iii), let ¢ €P,q € v[S]. Let p €v[S], that is, » {(p) ES.
Then A7 X(g), v 1)} = (v (), »"L(p)}, and, again by Proposition 7,
A({p.q}) = {p.q}. O

Thus we have shown that symmetries permute the sectors. In the following
proposition we shall suppose that P is the union of its sectors. We shall first
prove a lemma.

Lemma 1. Let C= {a:a+ b for all b € L} be the center of L. Let (a, v)
arise from a symmetry. Then ¢ € Cimplies a{c) €(C).

Proof. Tt follows from Corollary 2.
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Proposition 9. Let P=US;, t € T, where S; are sectors and 7 is any
set. Let (o, v) arise from a symmetry. Then »[S;] = 8, for any ¢
implies that a(c) = ¢ for any element ¢ in the center C of the logic L.

Proof. Let p,q €5, for some z. From the proof of Theorem 3 in (Pulmannovd,

1976) it follows that p(c) = g{c) (and this equals 0 or 1) forall ¢ € C. Now let
p €S, imply v(p) €S, for all t € T. Then for any ¢ € C, v(p)(c) = p{c) for all
c€ C As alc) € Cprovided ¢ € C, we get also p(a(c)) = v(pXelce)) = p(c) for
all p € P. From this it follows that Py = F,,ie., a(c) =c.

The center C of a logic L is discrete if there exists an at most countable
set {¢,; }nep of mutually disjoint elements of C such that () Ve, = 1, (i) C
consists precisely of all the lattice sums V,,czc,, where Z is an arbitrary sub-
set of D. The ¢,’s are atoms of C If L is a logic with a discrete center, then it
can be thought of as a direct sum of the irreducible logics L; = Lo, .} =
{e€ L:a < ¢;} and P= UP, where P; are disjoint subsets of P generated by
pure states on L; (Varadarajan, 1968).

Lemma 2. Let (L, M) be a quantum logic and L have a discrete
center C. Let o arise from a symmetry; then ¢ is an atom of Cif and
only if a(c) is an atom of C.

Proof. cisanatomof Cifd < ¢,d €ECimpliesd=0o0rd=c¢ Asa, 0"
preserve order, from d < a(c) it follows that o }(d) < ¢, that is, « 1(a’) 0or
a7Y(d) = ¢, from which we get that d = 0 ord = a(c). The converse part can be
proved analogously.

Proposition 10. Let (L, M) be a quantum logic and L have a discrete
center C. Let (a,») be a symmetry of (L, M). Then a[L[,, ¢/l 1=
Lo, ae 51 and v[B] = Py, where cx = a(cy), for all atoms ¢; Ec

Proof. Leta€ Loy ,ie.,a < ¢ Asa preserves the order, a(e) < a(c)),
ie,a(@ €L, ,ale)]- I(Iow Tet r € Py, thenp p(a) = p(a A ¢,) for a € L, where
pisa pure state on L{o cp}- Then plcn) = pcy) =1 and for m % n, plc,,) =

p(cm A e,) = 0. From this it follows that »(p)(a(cn)) = (c,) = 1 and
v(p)(alcm)) =Dlem) =0, so that »(p) € Py, where i = alcy).

Corrollary 3.1f ac) = c forall c € C, then a[Lyo ¢} ] = Lyo,c,,; and
v[Py] = Pp.

If L has a discrete center and P = UP;, where P; are sectors, then the con-
verse of Proposition 9 is also true.
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