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Abstract 

A symmetry in the quantum logic (L, M) is defined as a pair of bijections c~ : L ~ L and 
u :M-~ M such that the probabifities are preserved. Some properties of the symmetries 
are investigated. 

1. Introduction 

A symmetry  o f  a physical system is intuitively a transformation of  the 
system, leaving all physically significant features invariant. 

In the quantum logic approach, the quantum theory  is introduced in terms 
of  the set of  proposit ions L of  a physical system and the set of  states M of  
that system. Each state o f  M defines a probabil i ty  measure on L. We shall 
define a symmetry  to be a pair o f  bijections c~ : L -+ L and v : M-+ M such that  
v(rn) (a(a))  = m(a) for each m E M and a E L. Thus the probabil i t ies  are pre- 
served by  a symmetry.  This definition is analogous to the definition of  sym- 
metrices in C* algebras introduced by  Roberts and Roepstorff  ( t969) .  We 
shall analyze the properties o f  a symmetry  in a system (L,  M). 

2. Definitions and Notation 

Let L be a partially ordered set with first and last elements 0, 1, respectively, 
which is closed under a complementat ion a ~ a '  satisfying 

(i) (a')' = a 
(ii) a -< b implies b '  < a '  

We denote the least upper bound and greatest lower bound of  a, b E L, if they 
exist, by a V b and a A b, respectively, and assume 

(iii) a V a '  = 1 for all a E L 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

681 



682 s. PULMANNOV,~ 

We say that a, b E L are disjoint and write a ± b i fa  -< b'. We say that a, b E L 
are compatible and write a <+ b if there exist mutually disjoint elements a 1, bi, 
c @ L such that a = al V c and b = bl V c. We call L a logic if it also satisfies 

(iv) V ai E L for any disjoint sequence (ai) C L 
(v) if a, b, c E L are mutually compatible, then a ~+ b V c 

The set o f  propositions o f  a physical system is supposed to be a logic 
(Mackey, 1963; Varadarajan, 1962, 1968; Gudder, 1957). 

A state is a non-negative function on L satisfying 

(i) re(l)  = 1 
(ii) m(Vai) = Gm(ai) for any disjoint sequence (ai) C L. 

A set M of states is full if re(a) <_ re(b) for all m E M i m p l y  a _< b, a, b E L. A 
logic with a full set o f  states has the orthomodularity property 

a _< b implies b = a V (b A a')  

A state m E M is pure if it cannot be written in the form 

m = crn 1 + (1 - c)rrve, where 0 < c < 1 and rn 1, m2 E M 

Let P C M be the set o f  all pure states. The set o f  states o f  a physical system is 
usually supposed to be dosed under countable convex combinations, i.e., 
rn i E M, i = 1, 2 . . . .  imply • tim i E M for any sequence (ti) of  real numbers such 
that 0 _< t i _< 1 and Gti = 1. 

We shall call the couple (L, M), where L is a logic and M is a convex full set 
of  states, the quantum logic. 

Let L and L'  be orthomodular logics, The map T:  L -+ L' is a a homo- 
morphism if 

(i) T(0) = 0 
(ii) T(a') = T(a)' for any a E L 
(iii) T(Vai) = V(T(ai)) for any disjoint sequence (ai) c L 

The one-to-one o homomorphism of  L onto L is an automorphism. Auto- 
morphisms in special types of  logics were treated by Emch and Piron (1963), 
Dvure~enskij (1976), and Kruszyns'ki (1975). 

Let (L, M) be a quantum logic. An observable x is a a homomorphism from 
the Borel sets B(R)  of  the real line R into L. A collection of  observables 
{xx : ~. E A} is simultaneous if x x ( E )  .e. xg (F)  for nil E, F E B(R)  and X, ~ E A. 
I f x  is an observable and u a Borel function on R, we define the observable u(x)by 
u(x) (E)  = x ( u - l ( E ) )  for all E C B(R).  More generally, if ~ is an n-dimensional 
Borel function and ul, u2 . . . . .  Un are Borel functions on R,  we define the 
observable ff(ul(x), . . . ,  un(x)) by 

~(ul(x),..., un(x))(F~) = x { ~ :  ~(ul(oo),.. . ,  un(co))~ E) 

for all E E B(R).  
The spectrum e(x) of  an observable x is the smallest closed set E such that 
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x(E)  = 1. An observable is bounded if o(x) is bounded.  The expectat ion of  an 
observable x in the state m is 

m(x) = f ~m[x(dX)] 

if the integral exists. 
An observable x is a proposi t ion observable if a(x)  C (0,  1 }. The following 

statements are equivalent (Mackey, 1963): 

(i) x is a proposi t ion observable 
(ii) x is an indicator function o f  an observable 
(iii) x 2 = x 

Let X be the set o f  all observables and XL the set o f  aU proposit ion observ- 
ables on L. We can define a partial  ordering on XL by setting x -< y if re(x) <_ 
re(y)  for all m E M and an or thocomptementa t ion  by  setting x ±= f (x) ,  where 
f ( t )  = 1 - t, t E R. To each a E L there is an observable xa E XL such that  
Xa((1 }) = a.  It c an  be easily seen that  the map a w, Xa from L onto X z is an 
isomorphism. 

3. Properties o f  a Symmetry  

Definition 1. Let (L, M) be a quantum logic. A pair of  bijections 
a : L  ~ L and v : M ~  M w i l l  be called a symmetry  i fv (m)(a(a))  = 
m(a) for all a E L, m EM. 

Proposition 1. Ifc~ : L ~ L  and v : M - + M a r i s e  from a symmetry,  
then a is an automorphism of  L and p preserves countable convex 
~ombinations in M. 

Proof. As a :  L -~ L and u : M ~  M are bijections, we have a [L] = 
{a(a) : a  E L} = L and v[M] = {v(m) : m E M )  = M. The inverse maps a -1 and 
v -1 exist and arise from a symmetry  as well. F rom rn(o~(0)) = v - l ( m ) ( a  -1 c~(0)) = 
v - l (m)(0)  = 0 for all m E M w e  get a (0 )  = 0. From 1 = m(a Va ' )  = re(a) + m(a') 
for all m E M w e  have m(a(a)')  = 1 - rn(a(a)) = 1 - v-a(m)(a) = v-l(rn)(a ') = 
m(a(a')), that  is a ( a ) '  = ~(a ' ) .  Now a _< b, a, b E L implies by  the ortho- 
modulari ty  proper ty  re(a) <_ m(b) for all m EM. From this it  follows m(~(a))= 
v- l(m)(a)  < v-X(m)(b) = m(a(b))  for all m EM,  that i sa  -< b implies a (a)  < 
a(b). Let (ai) C L be a sequence o f  mutually disjoint elements. Then ai <_ a} 
• * . ~  t t 

maplies a(ai) _ c~(a)) = a (a i ) .  Thus we get rn(Va(ai)) = Nm(~(ai)) = 
Nl)-~l(m)(ai) = v-l(m)(Vai)  for all m EM,  i.e., Vt~(ai) = a(Vai).  We have shown 
that  a is an automorphism of  L. Now let m EM,  m = Ntimi, where mi E M  
and 0 < ti <- 1, ~,ti = 1. Then for a n y a  E L  v(m)(a) = m ( a - l ( a ) )  = ~timi(~-l(a)) = 
Ntiv(mi)(a), that  is p(m) = Ntii)(mi). 

Corollary 1. Let ~ : M  ~ M arise from a symmetry.  Then m E P implies 
v(m) E t'. 

Corollary 2. Let a : L -~ L arise from a symmetry.  Then a ~ b implies 
a (a)  ~ a (b ) .  
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Let a : L -~ L be  an au tomorph i sm.  We shall define the  m a p  ~ : X ~ X by  
~(x)(E)  = ~(x(E))  for  all  E EB(R) .  I t  can be easily seen tha t  ~ is a b i jec t ion .  

Proposition 2. Let (a, v) be a s y m m e t r y .  Then v(m)(~(x))  = re(x), in 
the sense tha t  i f  e i ther  side o f  the equa t ion  exist ,  so does  the 6 ther  
and the equal i ty  holds .  

Proof .  

f f = f 
Proposition 3. Let a : L -+ L be an a u tomorph i sm .  Then for  each 
observable x and each Borel  func t ion  u on  R ~(u(x)) = u(~(x)). 

/ ' r o o f  

~ ( u ( x ) ) ( ~ )  = ~ [ u ( x ) ( / r ) l  = a [x(u-~(E))] = ~ ( x ) [ u - 1 ( B ) ]  = u ( ~ ( x ) ) ( ~ )  

Proposition 4. Let (L, M) be a q u a n t u m  logic,  X the set o f  all 
observables,  and XL the set of  all p ropos i t ion  observables on L. Let 
r : X - +  X be a b i j ec t ion  such tha t  r( f(X))  = f ( r (x ) )  for  all x E X and 
all Borel  funct ions  f o n  R. Then  the m a p s  : L ~ L  def ined  by  a(a) = 
r(Xa)({1 }) is an au tomorph i sm.  

Proof. Let f ( t )  = t 2, t E R ,  t hen f ( r ( x ) )  = r ( f ( x ) )  impl ies  tha t  r ( x  2) = [~-(x)] 2. 
For  x E Xz, we have x 2 = x ,  so t t ia t  r(x 2) = :r(x) = I t (x ) ]  2. On the o ther  hand,  
i f x  ¢ x  2, t hen  r(x) ~ r(x  2) = [ r (x ) ]  2, as r is one . to-one .  Thus we have shown 
that  ~" [XL] = ~_-x [Xz,] = XL. Let us set a(a) = r(Xa)({1}); then  a is a one- to-  
one map  o f  L on to  L. We have to show tha t  (i) a ( 1 )  = 1, (ii) a ( a ' )  = a(a)' and 
(iii) a (Vai )  = Va(ai) for  any dis joint  sequence (ai) C L. To show (i) let  x 1 be 

1 such-that  xx({1 }) = 1. I f  x is any  observable ,  t hen  IR(x) ((1 }) = x [ Id  ({ 1 })] = 

x(R) = 1, where I g  is the  ind ica to r  func t ion  o f  R. Thus IR(x) = x I for any  
x E X. r(Ig(x)) = IR(r(x)) implies  r ( x l )  = x l ,  tha t  is a ( a )  = r ( x l ) ( { 1 }  ) = 
Xl({1}) = 1. To show (ii) let  f ( t )  = 1 - t , t  ER .  Thenf(Xa)({1})  = xa(f-a{ 1})= 
xa({0}) = x~'({1 }), i.e., f ( x , )  = Xa' and a(a') = r(Xa')({ 1 }) = r ( f ( x a ) ) ( { 1  }) = 
f(~'(Xa))({1}) = f(Xa)({0}) = [7(Xa)({1})] '  = a (a ) ' .  To show (iii),  let  (ai) C L 
be such tha t  al <- a) for  all i vaj, i , j  = 1 , 2  . . . . .  Clearly,  xai +>xa. for  all i , f  = 

is an observable  x ana  1 , 2  . . . . .  Then by  (Gudder ,  1967,  Theorem 2.4),  there  " J 
Borel f tmc t ions  ui such tha t  Xai ~- Ui(X ). Let us observe tha t  

n n n 

m(Xv~ai ) = m(XV~ai( {1} )) = m (Vai) = ~ m(ai) = ~ m(xai) 
1 1 ! 

for all m E M,  so tha t  the observable ~TXai exists  and  equals xv'~ai (Gudder ,  

1966). Let  us set ~'~Xai = ~(xa,, . . . .  Xan) = ~(ux . . . . .  Un) = ¢(x ) .  F r o m  z(~0(x)) = 
¢ ( r ( x ) )  it  fol lows tha t  7"(G~Xai) = r ( ~ b ( u x , . . . ,  Un)(X)) = ~(u~ . . . . .  Un)(r(x)) = 
~,~Ui(~'(X)) = ~,~T(Ui(X))  = ~,~7"(Xai ). NOw we can show tha t  a preserves the 
order .  Let  a < b, then b = a V c, where a _ e by  the o r t h o m o d u l a n t y  p roper ty .  
Then xb  = Xa ~ Xe implies  r(Xb) = r(Xa) + r(xe), i .e. ,  r(Xa) _< "c(xb), which implies  
m [r(x~)({1 })] <_ m [r(Xb)({1})] for  all m ~ M, tha t  is, ~ (a )  ~< a(b) .  F r o m  the  
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existence of  r -1 such that 7-1(f(x)) = f(T - l (x))  (indeed, r [ f ( r  - l (x))]  = f [ r r  -1 (x)] 
implies f(7"-l(x)) = r - l ( f (x ) )  there follows the existence of  a -1 also preserving 
the order. Then ai _< V~ai,  i = 1, 2 . . . .  imply o~(ai) <_ ¢~(V~ai), i = 1 , 2 , . . . .  
Let b E L be such that a(ai) < b for i = 1,2 . . . . .  Then ai <- a - l (b )  i = 1 ,2  . . . .  

e ~  . t m  0 0  

imply V 1 a i <_ o~-l(b), that is, a(V1 a i )  < b. Thus we have shown that  a(V1 ai )  = 

VT~(ai). 
Now we shall investigate the case in which one of  the maps a : L ~ L and 

u : M - + M i s  sufficient to define a symmetry. 

Proposition 5. Let (L, S) be a quantum logic, where S is the set of  all 
states on L. If  a : L -+ L is an automorphism, then there exists a bijec- 
tion r~ : S -+ S such that (o~, ~) is a symmetry. 

Proof  Let us set v(m)(a)  = m(a-l(a))  for all m E S, a E L. It is easy to check 
that a ~-+ u(m)(a) is a probability measure on L, so that u(m) C S and v : S -+ S 
is a bijection. []  

Let ~ be the set of  all probability measures on R and let Horn(S, ~ )  be the 
set of  all convex homomorphisms on S into ~ .  Then a set of  observables X on 
the logic L is said to be total if to each element o f  Horn(S, ~ ) ,  there corresponds 
a unique observable in X (Kronfll, 1970). That is, if/3 E Horn(S, ~ ) ,  then 
there is an x ~ X such that [3(p)(E) = p (x(E))  for alt p E S, E E B(R).  

Proposition 5. Let (L, S )  be a quantum logi c such that the set of  all 
observables X is total. Then to each convex isomorphism v : S -+ S 
there is an automorphism a : L -~ L such that (a, u) is a symmetry. 

Proof  Let u : S -+ S be a convex isomorphism. Then for x E X, the map 
: m ~-~ u(m) (x(.)) is a convex homomorphism of  S into ~ .  From the totality 

of  X it follows that there is a y ~ X Such that v(m)(x(E))  = m ( y  (E))  for all 
m E S and E E B(R).  Let us set y = 7"-1(x) .  Then x ~ z-l(x) maps X onto X 
and is one-to-one since p is an isomorphism. Let f b e  any Borel function on R. 
Then m[ r - l ( f (x ) ) (E) ]  = v(m)  [ f (x) (E)]  = v(m) [x(f- l (E))]  = m~r-l(x)U-l(E))] = 
m [f(T-~(x))(E)] for all m E M, E E B(R) ,  so that 7-1(f(x)) = f(r-~(x)).  By 
Proposition 4, there is an automorphism a -I o f  L such that r- l (xa)({1})  = 
a-l(a) for all a ~ L. Then v(m) (a(a)) = u(m) [(r(Xa))({ 1})] = m [r -1 (Z(Xa))(( 1})] = 
m(Xa((1 }))= re(a). 

4. Symmetries and the Superposition Principle 

In this sequel, we shall use the stronger form of  quantum logics which was 
considered by Pulmannovfi (1976). 

Let L be a logic, M a set o f  states on L, and P the set o f  all pure states in M. 
If  a c L, m @ P, we define Pa = {m @ P: re(a) = 1 }, Lm = (a E L : m(a) = 1 }. 
We shall suppose that the system (L, M) satisfies the following: 

(i) Pa C Pb implies a --< b 
(ii) Lrn 1 C Lm~ implies m I = m 2 
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It is easy to check that Mis  a full set of  states on L. Indeed, let re(a) < re(b) 
for all m EM, then re(a) = i implies re(b) = 1 for all m EP,  so that Pa C Pb, 
which implies a -< b. 

We recall that m o E M is a superposition of  the states p, q E M if p(a) = O, 
q(a) = 0 imply mo(a ) = O. 

A set S C P is said to be closed under superpositions if it contains every pure 
superposition of  any pair of  its elements. If S is not closed under superpositions, 
we denote A(S) the smallest subset of  P closed under superpositions and con- 
taining S. 

We say that the superposition principle holds in (L, M) if there is an 
r E A ( ( p , q } ) , r v a p ,  r ¢ q  for any pair p, q inP, p--/:q. 

The set S C P i s  a sector i f( i )  S = A(S), (ii) i fp,  q ES,  then there is an 
r E A({p, q}), r v e p, r 4 = q, (iii) if q E P, q ~ S, then A({p, q}) = (p, q} for 
a n y p  ES.  

Proposition 7. If (a, v) arise from a symmetry, then v [A(S)] = 
A(u IS]) for any S C P. 

Proof From Corollary 1 it follows that v [A(S)] = {v(p) : p E A(S)} c P. 
We shall first show that v [A(S)] is closed under superpositions. Let p, 
q E v [A(S)] and let r be a superposition of  p, q, that is, let p(a) = 0, q(a) = 0 
imply r(a) = O. Let v-l(p)(b ) = 0 and v-l(q)(b ) = 0, then p(a(b )) = 0 and 
q(a(b )) = O, which imply r(a(b )) = 0, i.e., v-l(r)(b ) = O. That is, v-l(r) is a 
superposition of  v-l(p) and v-l(q). But v-l(p),  v-l(q) E A(S) and consequently 
v-l(r) E A(S), i.e., r E v [A(S)]. Since v [A(S)] is closed under superpositions, 
we have A(v [S]) C v [A(S)]. We can repeat the same reasoning for the symmetry 
(a-l ,  v-l)  and the set v [S ] C P instead of  S. Thus we get A(v-a [v [S] ] ) C 
v -1 [A(v [S])],  consequently v [A(S)] C A(v [S ]). 

Proposition 8. Let (~, v) arise from a symmetry. Then if S C P is a 
sector, v[S] is a sector as well. 

Proof We have to show the properties (i)-(iii) from the definition of  a 
sector. Property (i) follows from Proposition 7. To show (ii), let p, q E v[S], 
then v-l(p), v-l(q) E S and there is an r E S such that r E A({v-l(p), v-l(q)}), 
r ¢ v-l(p),  r ¢ v-l(q). Then as in the proof of Proposition 7, v(r) E A({p, q}), 
v(r) --/= p, v(r) 4= q. For (iii), let q E P, q ¢ v IS]. Let p E v [S], that is, v-l(p) E S. 
Then A({v-l(q), v-1(p)}) = {v-l(q), v-l(p)}, and, again by Proposition 7, 
A({p, q}) = (p, q}. [] 

Thus we have shown that symmetries permute the sectors. In the following 
proposition we shall suppose that P is the union of its sectors. We shall first 
prove a lemma. 

Lernma 1. Let C = {a :a ~+ b for all b E L } b e  the center of  L. Let (a, v) 
arise from a symmetry. Then c ~ Cimplies a(c)  E (C). 

Proof. It follows from Corollary 2. 
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Proposition 9. Let P= USt, t E T, where St are sectors and Tis any 
set. Let (a, u) arise from a symmetry. Then v [St] = St for any t 
implies that a(c) = c for any element c in the center C of  the logic L. 

Proof Let p, q E St for some t. From the proof of  Theorem 3 in (Pulmannov~, 
1976) it follows that p(c)  = q(e) (and this equals 0 or 1) for all c E C Now let 
p E S t imply v(p) E St for all t E T. Then for any c E C, v(p)(c) = p(c)  for all 
c C  C. As a(c) E C provided c E C, we get also p(a(c))  = p(p)(a(c)) =p(c )  for 
all p E P. From this it follows that Pa(c) = Pc, i.e., a(c) = c. 

The center C of  a logic L is discrete if there exists an at most countable 
set (Cn)n~D of  mutually disjoint elements o f  C such that (i) VnCn = 1, (ii) C 
consists precisely o f  all the lattice sums Vn~ZCn, where Z is an arbitrary sub- 
set of  D. The Cn'S are atoms of  C If L is a logic with a discrete center, then it 
can be thought of  as a direct sum of  the irreducible logics Lj = L[o,cj] = 
(a E L : a -< ci) and P = U/~, where P] are disjoint subsets of  P generated by 
pure states on Lj (Varadarajan, 1968). 

Lernma 2. Let (L, M) be a quantum logic and L have a discrete 
center C. Let a arise from a symmetry; then e is an atom of C i f a n d  
only if a(c) is an atom of  C 

Proof c is an atom of  C if d _< c, d E C implies d = 0 or d = c. As a, cL -1 
preserve order, from d _< a(c)  it follows that a-l(d) <_ c, that is, a - l ( d )  = 0 Or 
a-l(d)  = c, from which we get that d = 0 or d = a(c). The converse part can be 
proved analogously. 

Proposition 10. Let (L, M) be a quantum logic and L have a discrete 
center C Let (a, p) be a symmetry of(L,/14). Then a[L[o,c/]  ] = 
L[o,~(c/)] and v [Pi] = Pk, where ck = a(c]), for all atoms c] E C 

Proof. Let a E L[o, cil ' i.e., a <_ c]. As c~ preserves the order, a(a) < a(c/), 
i .e ,  a(a) E L [o ~(c-~ b~ow let/~ E Pn, then/~(a) = p(a/k Cn) for a E L, where 
p is a pure state on L[o, Cn]: Then p(Cn) = p(Cn) - 1 and for m q: n, p(crn) = 

P(Cm A Cn) = 0. From this it follows that p~)(a(Cn))  = "P(Cn) = t and 
v ~ )  (a(Cm)) = P(Crn) = 0, so that v(/7) E Pk, where ck = a (Cn). 

Corrollary 3. If  a(c) = c for all c E C, then a [L[o, cnl ] = L[o, c n] and 
pIP,]  =pn.  

I f L  has a discrete center and P = UPi, where Pi are sectors, then the con- 
verse o f  Proposition 9 is also true. 
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